
7 | ELECTRIC POTENTIAL

Figure 7.1 The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that may be
stored and released by an electric potential difference. In this chapter, we calculate just how much energy can be released in a
lightning strike and how this varies with the height of the clouds from the ground. (credit: modification of work by Anthony
Quintano)
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Introduction
In Electric Charges and Fields, we just scratched the surface (or at least rubbed it) of electrical phenomena. Two terms
commonly used to describe electricity are its energy and voltage, which we show in this chapter is directly related to the
potential energy in a system.

We know, for example, that great amounts of electrical energy can be stored in batteries, are transmitted cross-country via
currents through power lines, and may jump from clouds to explode the sap of trees. In a similar manner, at the molecular
level, ions cross cell membranes and transfer information.

We also know about voltages associated with electricity. Batteries are typically a few volts, the outlets in your home
frequently produce 120 volts, and power lines can be as high as hundreds of thousands of volts. But energy and voltage
are not the same thing. A motorcycle battery, for example, is small and would not be very successful in replacing a much
larger car battery, yet each has the same voltage. In this chapter, we examine the relationship between voltage and electrical
energy, and begin to explore some of the many applications of electricity.
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7.1 | Electric Potential Energy

Learning Objectives

By the end of this section, you will be able to:

• Define the work done by an electric force

• Define electric potential energy

• Apply work and potential energy in systems with electric charges

When a free positive charge q is accelerated by an electric field, it is given kinetic energy (Figure 7.2). The process is
analogous to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its
electric potential energy is converted into kinetic energy, although of course the sources of the forces are very different. Let
us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric
potential energy.

Figure 7.2 A charge accelerated by an electric field is
analogous to a mass going down a hill. In both cases, potential
energy decreases as kinetic energy increases, – ΔU = ΔK .

Work is done by a force, but since this force is conservative, we
can write W = – ΔU .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken, as
we will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to
define a potential energy associated with the force. It is usually easier to work with the potential energy (because it depends
only on position) than to calculate the work directly.

To show this explicitly, consider an electric charge +q fixed at the origin and move another charge +Q toward q in such

a manner that, at each instant, the applied force F→ exactly balances the electric force F→ e on Q (Figure 7.3). The

work done by the applied force F→ on the charge Q changes the potential energy of Q. We call this potential energy the

electrical potential energy of Q.

Figure 7.3 Displacement of “test” charge Q in the presence of
fixed “source” charge q.
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The work W12 done by the applied force F→ when the particle moves from P1 to P2 may be calculated by

W12 = ∫
P1

P2
F→ · d l→ .

Since the applied force F→ balances the electric force F→ e on Q, the two forces have equal magnitude and opposite

directions. Therefore, the applied force is

F→ = − Fe
→

= − kqQ
r2 r̂ ,

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The directions of
both the displacement and the applied force in the system in Figure 7.3 are parallel, and thus the work done on the system
is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force does negative
work, the system gains potential energy. When a conservative force does positive work, the system loses potential energy,
ΔU = −W. In the system in Figure 7.3, the Coulomb force acts in the opposite direction to the displacement; therefore,

the work is negative. However, we have increased the potential energy in the two-charge system.

Example 7.1

Kinetic Energy of a Charged Particle

A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 ) from a +5.0-nC charge q fixed at the origin

(Figure 7.4). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( r2 ).

Figure 7.4 The charge Q is repelled by q, thus having work
done on it and gaining kinetic energy.

a. What is the work done by the electric field between r1 and r2 ?

b. How much kinetic energy does Q have at r2 ?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution

Integrating force over distance, we obtain

W12 = ∫
r1

r2
F→ · d r→ = ⌠

⌡r1

r2
kqQ
r2 dr = ⎡

⎣−kqQ
r

⎤
⎦r1

r2
= kqQ⎡

⎣
−1
r2

+ 1
r1

⎤
⎦

= ⎛
⎝8.99 × 109 Nm2 /C2⎞

⎠
⎛
⎝5.0 × 10−9 C⎞

⎠
⎛
⎝3.0 × 10−9 C⎞

⎠
⎡
⎣

−1
0.15 m + 1

0.10 m
⎤
⎦

= 4.5 × 10−7 J.

This is also the value of the kinetic energy at r2.

Significance

Charge Q was initially at rest; the electric field of q did work on Q, so now Q has kinetic energy equal to the work
done by the electric field.
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7.1 Check Your Understanding If Q has a mass of 4.00 µg, what is the speed of Q at r2?

In this example, the work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a
negative ΔU . A value for U can be found at any point by taking one point as a reference and calculating the work needed

to move a charge to the other point.

Electric Potential Energy

Work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative ΔU .

Mathematically,

(7.1)W = −ΔU.

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by
a conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing
with the force directly. It is much more common, for example, to use the concept of electric potential energy than to deal
with the Coulomb force directly in real-world applications.

In polar coordinates with q at the origin and Q located at r, the displacement element vector is d l→ = r̂ dr and thus the

work becomes

W12 = −kqQ⌠
⌡r1

r2
1
r2 r̂ · r̂ dr = kqQ 1

r2
− kqQ 1

r1
.

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To explore this further,
compare path P1 to P2 with path P1 P3 P4 P2 in Figure 7.5.

Figure 7.5 Two paths for displacement P1 to P2. The work

on segments P1 P3 and P4 P2 are zero due to the electrical

force being perpendicular to the displacement along these paths.
Therefore, work on paths P1 P2 and P1 P3 P4 P2 are equal.

The segments P1 P3 and P4 P2 are arcs of circles centered at q. Since the force on Q points either toward or away from

q, no work is done by a force balancing the electric force, because it is perpendicular to the displacement along these arcs.
Therefore, the only work done is along segment P3 P4, which is identical to P1 P2.

One implication of this work calculation is that if we were to go around the path P1 P3 P4 P2 P1, the net work would be

zero (Figure 7.6). Recall that this is how we determine whether a force is conservative or not. Hence, because the electric

force is related to the electric field by F→ = q E→ , the electric field is itself conservative. That is,

∮ E→ · d l→ = 0.

Note that Q is a constant.
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Figure 7.6 A closed path in an electric field. The net work
around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a conservative force
is also expressed as the difference in the potential energy corresponding to that force. Therefore, the work Wref to bring a

charge from a reference point to a point of interest may be written as

Wref = ∫
rref

r
F→ · d l→

and, by Equation 7.1, the difference in potential energy (U2 − U1) of the test charge Q between the two points is

ΔU = −∫
rref

r
F→ · d l→ .

Therefore, we can write a general expression for the potential energy of two point charges (in spherical coordinates):

ΔU = −⌠
⌡rref

r
kqQ
r2 dr = −⎡

⎣−kqQ
r

⎤
⎦rref

r
= kqQ⎡

⎣
1
r − 1

rref
⎤
⎦.

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

U(r) = kqQ
r − Uref.

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely far apart,
there is no interaction between them. (Recall the discussion of reference potential energy in Potential Energy and
Conservation of Energy (http://cnx.org/content/m58311/latest/) .) Taking the potential energy of this state to be
zero removes the term Uref from the equation (just like when we say the ground is zero potential energy in a gravitational

potential energy problem), and the potential energy of Q when it is separated from q by a distance r assumes the form

(7.2)U(r) = kqQ
r (zero reference at r = ∞).

This formula is symmetrical with respect to q and Q, so it is best described as the potential energy of the two-charge system.

Example 7.2

Potential Energy of a Charged Particle

A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 ) from a +5.0-nC charge q fixed at the origin

(Figure 7.7). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( r2 ).
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7.2

Figure 7.7 The charge Q is repelled by q, thus having work
done on it and losing potential energy.

What is the change in the potential energy of the two-charge system from r1 to r2?

Strategy

Calculate the potential energy with the definition given above: ΔU12 = −∫
r1

r2
F→ · d r→ . Since Q started from

rest, this is the same as the kinetic energy.

Solution

We have

ΔU12 = −∫
r1

r2
F→ · d r→ = −⌠

⌡r1

r2
kqQ
r2 dr = −⎡

⎣−kqQ
r

⎤
⎦r1

r2
= kqQ⎡

⎣
1
r2

− 1
r1

⎤
⎦

= ⎛
⎝8.99 × 109 Nm2 /C2⎞

⎠
⎛
⎝5.0 × 10−9 C⎞

⎠
⎛
⎝3.0 × 10−9 C⎞

⎠
⎡
⎣

1
0.15 m − 1

0.10 m
⎤
⎦

= −4.5 × 10−7 J.

Significance

The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic energy
in this system. Recall from Example 7.1 that the change in kinetic energy was positive.

Check Your Understanding What is the potential energy of Q relative to the zero reference at infinity at
r2 in the above example?

Due to Coulomb’s law, the forces due to multiple charges on a test charge Q superimpose; they may be calculated
individually and then added. This implies that the work integrals and hence the resulting potential energies exhibit the same
behavior. To demonstrate this, we consider an example of assembling a system of four charges.

Example 7.3

Assembling Four Positive Charges

Find the amount of work an external agent must do in assembling four charges +2.0 µC,
+3.0 µC, + 4.0 µC, and +5.0 µC at the vertices of a square of side 1.0 cm, starting each charge from infinity

(Figure 7.8).
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Figure 7.8 How much work is needed to assemble this charge
configuration?

Strategy

We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to bring
them in from infinity to their final location. We do this in order of increasing charge.

Solution

Step 1. First bring the +2.0-µC charge to the origin. Since there are no other charges at a finite distance from

this charge yet, no work is done in bringing it from infinity,

W1 = 0.

Step 2. While keeping the +2.0-µC charge fixed at the origin, bring the +3.0-µC charge to

(x, y, z) = (1.0 cm, 0, 0) (Figure 7.9). Now, the applied force must do work against the force exerted by the

+2.0-µC charge fixed at the origin. The work done equals the change in the potential energy of the +3.0-µC
charge:

W2 = kq1 q2
r12

= ⎛
⎝9.0 × 109 N · m2

C2
⎞
⎠

⎛
⎝2.0 × 10−6 C⎞

⎠
⎛
⎝3.0 × 10−6 C⎞

⎠

1.0 × 10−2 m
= 5.4 J.

Figure 7.9 Step 2. Work W2 to bring the +3.0-µC charge

from infinity.

Step 3. While keeping the charges of +2.0 µC and +3.0 µC fixed in their places, bring in the +4.0-µC charge

to (x, y, z) = (1.0 cm, 1.0 cm, 0) (Figure 7.10). The work done in this step is

W3 = kq1 q3
r13

+ kq2 q3
r23

= ⎛
⎝9.0 × 109 N · m2

C2
⎞
⎠
⎡

⎣
⎢

⎛
⎝2.0 × 10−6 C⎞

⎠
⎛
⎝4.0 × 10−6 C⎞

⎠

2 × 10−2 m
+

⎛
⎝3.0 × 10−6 C⎞

⎠
⎛
⎝4.0 × 10−6 C⎞

⎠

1.0 × 10−2 m

⎤

⎦
⎥ = 15.9 J.
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7.3

Figure 7.10 Step 3. The work W3 to bring the +4.0-µC
charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the +5.0-µC charge to

(x, y, z) = (0, 1.0 cm, 0) (Figure 7.11). The work done here is

W4 = kq4
⎡
⎣

q1
r14

+ q2
r24

+ q3
r34

⎤
⎦,

= ⎛
⎝9.0 × 109 N · m2

C2
⎞
⎠

⎛
⎝5.0 × 10−6 C⎞

⎠

⎡

⎣
⎢

⎛
⎝2.0 × 10−6 C⎞

⎠

1.0 × 10−2 m
+

⎛
⎝3.0 × 10−6 C⎞

⎠

2 × 10−2 m
+

⎛
⎝4.0 × 10−6 C⎞

⎠

1.0 × 10−2 m

⎤

⎦
⎥ = 36.5 J.

Figure 7.11 Step 4. The work W4 to bring the +5.0-µC
charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in
bringing each charge from infinity to its final position:

WT = W1 + W2 + W3 + W4 = 0 + 5.4 J + 15.9 J + 36.5 J = 57.8 J.

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more complicated
interactions need to be considered; the work on the third charge only depends on its interaction with the first and
second charges, the interaction between the first and second charge does not affect the third.

Check Your Understanding Is the electrical potential energy of two point charges positive or negative if
the charges are of the same sign? Opposite signs? How does this relate to the work necessary to bring the
charges into proximity from infinity?

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and
negative if the two charges are of opposite types. This makes sense if you think of the change in the potential energy ΔU
as you bring the two charges closer or move them farther apart. Depending on the relative types of charges, you may have
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to work on the system or the system would do work on you, that is, your work is either positive or negative. If you have
to do positive work on the system (actually push the charges closer), then the energy of the system should increase. If you
bring two positive charges or two negative charges closer, you have to do positive work on the system, which raises their
potential energy. Since potential energy is proportional to 1/r, the potential energy goes up when r goes down between two
positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the
charges are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since
potential energy is negative in the case of a positive and a negative charge pair, the increase in 1/r makes the potential energy
more negative, which is the same as a reduction in potential energy.

The result from Example 7.1 may be extended to systems with any arbitrary number of charges. In this case, it is most
convenient to write the formula as

(7.3)
W12 ⋯ N = k

2∑
i

N
∑

j

N qi q j
ri j

for i ≠ j.

The factor of 1/2 accounts for adding each pair of charges twice.

7.2 | Electric Potential and Potential Difference

Learning Objectives

By the end of this section, you will be able to:

• Define electric potential, voltage, and potential difference

• Define the electron-volt

• Calculate electric potential and potential difference from potential energy and electric field

• Describe systems in which the electron-volt is a useful unit

• Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system, which would
nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The default assumption in the
absence of other information is that the test charge is positive.) We briefly defined a field for gravity, but gravity is always
attractive, whereas the electric force can be either attractive or repulsive. Therefore, although potential energy is perfectly
adequate in a gravitational system, it is convenient to define a quantity that allows us to calculate the work on a charge

independent of the magnitude of the charge. Calculating the work directly may be difficult, since W = F→ · d→ and the

direction and magnitude of F→ can be complex for multiple charges, for odd-shaped objects, and along arbitrary paths. But

we do know that because F→ = q E→ , the work, and hence ΔU, is proportional to the test charge q. To have a physical

quantity that is independent of test charge, we define electric potential V (or simply potential, since electric is understood)
to be the potential energy per unit charge:

Electric Potential

The electric potential energy per unit charge is

(7.4)V = U
q .

Since U is proportional to q, the dependence on q cancels. Thus, V does not depend on q. The change in potential energy
ΔU is crucial, so we are concerned with the difference in potential or potential difference ΔV between two points, where
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ΔV = VB − VA = ΔU
q .

Electric Potential Difference

The electric potential difference between points A and B, VB − VA, is defined to be the change in potential energy

of a charge q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the
name volt (V) after Alessandro Volta.

1 V = 1 J/C

The familiar term voltage is the common name for electric potential difference. Keep in mind that whenever a voltage is
quoted, it is understood to be the potential difference between two points. For example, every battery has two terminals, and
its voltage is the potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary.
This is analogous to the fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture
hall floor. It is worthwhile to emphasize the distinction between potential difference and electrical potential energy.

Potential Difference and Electrical Potential Energy

The relationship between potential difference (or voltage) and electrical potential energy is given by

(7.5)ΔV = ΔU
q or ΔU = qΔV .

Voltage is not the same as energy. Voltage is the energy per unit charge. Thus, a motorcycle battery and a car battery can both
have the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more
energy than the other because ΔU = qΔV . The car battery can move more charge than the motorcycle battery, although

both are 12-V batteries.

Example 7.4

Calculating Energy

You have a 12.0-V motorcycle battery that can move 5000 C of charge, and a 12.0-V car battery that can move
60,000 C of charge. How much energy does each deliver? (Assume that the numerical value of each charge is
accurate to three significant figures.)

Strategy

To say we have a 12.0-V battery means that its terminals have a 12.0-V potential difference. When such a battery
moves charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in
potential energy equal to ΔU = qΔV . To find the energy output, we multiply the charge moved by the potential

difference.

Solution

For the motorcycle battery, q = 5000 C and ΔV = 12.0 V . The total energy delivered by the motorcycle

battery is

ΔUcycle = (5000 C)(12.0 V) = (5000 C)(12.0 J/C) = 6.00 × 104 J.

Similarly, for the car battery, q = 60,000 C and

ΔUcar = (60,000 C)(12.0 V) = 7.20 × 105 J.

Significance

Voltage and energy are related, but they are not the same thing. The voltages of the batteries are identical, but the
energy supplied by each is quite different. A car battery has a much larger engine to start than a motorcycle. Note
also that as a battery is discharged, some of its energy is used internally and its terminal voltage drops, such as
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7.4

when headlights dim because of a depleted car battery. The energy supplied by the battery is still calculated as in
this example, but not all of the energy is available for external use.

Check Your Understanding How much energy does a 1.5-V AAA battery have that can move 100 C?

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery
is negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract
them to their positive terminals (B), as shown in Figure 7.12. The change in potential is ΔV = VB − VA = + 12 V and

the charge q is negative, so that ΔU = qΔV is negative, meaning the potential energy of the battery has decreased when q

has moved from A to B.

Figure 7.12 A battery moves negative charge from its
negative terminal through a headlight to its positive terminal.
Appropriate combinations of chemicals in the battery separate
charges so that the negative terminal has an excess of negative
charge, which is repelled by it and attracted to the excess
positive charge on the other terminal. In terms of potential, the
positive terminal is at a higher voltage than the negative
terminal. Inside the battery, both positive and negative charges
move.

Example 7.5

How Many Electrons Move through a Headlight Each Second?

When a 12.0-V car battery powers a single 30.0-W headlight, how many electrons pass through it each second?

Strategy

To find the number of electrons, we must first find the charge that moves in 1.00 s. The charge moved is related
to voltage and energy through the equations ΔU = qΔV . A 30.0-W lamp uses 30.0 joules per second. Since the

battery loses energy, we have ΔU = −30 J and, since the electrons are going from the negative terminal to the

positive, we see that ΔV = +12.0 V.

Solution

To find the charge q moved, we solve the equation ΔU = qΔV :

q = ΔU
ΔV .

Entering the values for ΔU and ΔV , we get
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7.5

q = −30.0 J
+12.0 V = −30.0 J

+12.0 J/C = −2.50 C.

The number of electrons ne is the total charge divided by the charge per electron. That is,

ne = −2.50 C
−1.60 × 10−19 C/e− = 1.56 × 1019 electrons.

Significance

This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many
being present in ordinary systems. In fact, electricity had been in use for many decades before it was determined
that the moving charges in many circumstances were negative. Positive charge moving in the opposite direction of
negative charge often produces identical effects; this makes it difficult to determine which is moving or whether
both are moving.

Check Your Understanding How many electrons would go through a 24.0-W lamp?

The Electron-Volt
The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule.
But on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example,
even a tiny fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue.
The particle may do its damage by direct collision, or it may create harmful X-rays, which can also inflict damage. It is
useful to have an energy unit related to submicroscopic effects.

Figure 7.13 shows a situation related to the definition of such an energy unit. An electron is accelerated between two
charged metal plates, as it might be in an old-model television tube or oscilloscope. The electron gains kinetic energy that
is later converted into another form—light in the television tube, for example. (Note that in terms of energy, “downhill” for
the electron is “uphill” for a positive charge.) Since energy is related to voltage by ΔU = qΔV , we can think of the joule

as a coulomb-volt.
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Figure 7.13 A typical electron gun accelerates electrons using a potential difference between two separated metal plates.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE = qV . The energy of the

electron in electron-volts is numerically the same as the voltage between the plates. For example, a 5000-V potential
difference produces 5000-eV electrons. The conceptual construct, namely two parallel plates with a hole in one, is shown in
(a), while a real electron gun is shown in (b).

Electron-Volt

On the submicroscopic scale, it is more convenient to define an energy unit called the electron-volt (eV), which is the
energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

1 eV = (1.60 × 10−19 C)(1 V) = (1.60 × 10−19 C)(1 J/C) = 1.60 × 10−19 J.

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron
accelerated through 50 V gains 50 eV. A potential difference of 100,000 V (100 kV) gives an electron an energy of 100,000
eV (100 keV), and so on. Similarly, an ion with a double positive charge accelerated through 100 V gains 200 eV of
energy. These simple relationships between accelerating voltage and particle charges make the electron-volt a simple and
convenient energy unit in such circumstances.

The electron-volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and
nuclear binding energies are among the quantities often expressed in electron-volts. For example, about 5 eV of energy
is required to break up certain organic molecules. If a proton is accelerated from rest through a potential difference
of 30 kV, it acquires an energy of 30 keV (30,000 eV) and can break up as many as 6000 of these molecules
(30,000 eV ÷ 5 eV per molecule = 6000 molecules). Nuclear decay energies are on the order of 1 MeV (1,000,000 eV)

per event and can thus produce significant biological damage.

Conservation of Energy
The total energy of a system is conserved if there is no net addition (or subtraction) due to work or heat transfer. For
conservative forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.
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7.6

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, K + U = constant. A loss of

U for a charged particle becomes an increase in its K. Conservation of energy is stated in equation form as

K + U = constant

or

Ki + Ui = Kf + Uf

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us
insights and facilitate problem solving.

Example 7.6

Electrical Potential Energy Converted into Kinetic Energy

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume
that this numerical value is accurate to three significant figures.)

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and
neglecting the gravitational force (we will check on this assumption later), all of the electrical potential energy
is converted into kinetic energy. We can identify the initial and final forms of energy to be

Ki = 0, Kf = 1
2mv2, Ui = qV , Uf = 0.

Solution

Conservation of energy states that

Ki + Ui = Kf + Uf.

Entering the forms identified above, we obtain

qV = mv2

2 .

We solve this for v:

v = 2qV
m .

Entering values for q, V, and m gives

v = 2(−1.60 × 10−19 C)( − 100 J/C)
9.11 × 10−31 kg

= 5.93 × 106 m/s.

Significance

Note that both the charge and the initial voltage are negative, as in Figure 7.13. From the discussion of electric
charge and electric field, we know that electrostatic forces on small particles are generally very large compared
with the gravitational force. The large final speed confirms that the gravitational force is indeed negligible here.
The large speed also indicates how easy it is to accelerate electrons with small voltages because of their very
small mass. Voltages much higher than the 100 V in this problem are typically used in electron guns. These
higher voltages produce electron speeds so great that effects from special relativity must be taken into account and
hence are reserved for a later chapter (Relativity (http://cnx.org/content/m58555/latest/) ). That is why we
consider a low voltage (accurately) in this example.

Check Your Understanding How would this example change with a positron? A positron is identical to
an electron except the charge is positive.
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Voltage and Electric Field
So far, we have explored the relationship between voltage and energy. Now we want to explore the relationship between

voltage and electric field. We will start with the general case for a non-uniform E→ field. Recall that our general formula

for the potential energy of a test charge q at point P relative to reference point R is

UP = −∫
R

P
F→ · d l→ .

When we substitute in the definition of electric field ( E→ = F→ /q), this becomes

UP = −q∫
R

P
E→ · d l→ .

Applying our definition of potential (V = U/q) to this potential energy, we find that, in general,

(7.6)
VP = −∫

R

P
E→ · d l→ .

From our previous discussion of the potential energy of a charge in an electric field, the result is independent of the path
chosen, and hence we can pick the integral path that is most convenient.

Consider the special case of a positive point charge q at the origin. To calculate the potential caused by q at a distance r from
the origin relative to a reference of 0 at infinity (recall that we did the same for potential energy), let P = r and R = ∞,

with d l→ = d r→ = r̂ dr and use E→ = kq
r2 r̂ . When we evaluate the integral

VP = −∫
R

P
E→ · d l→

for this system, we have

Vr = −⌠
⌡∞

r
kq
r2 r̂ · r̂ dr,

which simplifies to

Vr = −⌠
⌡∞

r
kq
r2 dr = kq

r − kq
∞ = kq

r .

This result,

Vr = kq
r

is the standard form of the potential of a point charge. This will be explored further in the next section.

To examine another interesting special case, suppose a uniform electric field E→ is produced by placing a potential

difference (or voltage) ΔV across two parallel metal plates, labeled A and B (Figure 7.14). Examining this situation will

tell us what voltage is needed to produce a certain electric field strength. It will also reveal a more fundamental relationship
between electric potential and electric field.
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Figure 7.14 The relationship between V and E for parallel
conducting plates is E = V / d . (Note that ΔV = VAB in

magnitude. For a charge that is moved from plate A at higher
potential to plate B at lower potential, a minus sign needs to be
included as follows: −ΔV = VA − VB = VAB. )

From a physicist’s point of view, either ΔV or E→ can be used to describe any interaction between charges. However,

ΔV is a scalar quantity and has no direction, whereas E→ is a vector quantity, having both magnitude and direction. (Note

that the magnitude of the electric field, a scalar quantity, is represented by E.) The relationship between ΔV and E→ is

revealed by calculating the work done by the electric force in moving a charge from point A to point B. But, as noted earlier,
arbitrary charge distributions require calculus. We therefore look at a uniform electric field as an interesting special case.

The work done by the electric field in Figure 7.14 to move a positive charge q from A, the positive plate, higher potential,
to B, the negative plate, lower potential, is

W = −ΔU = −qΔV .

The potential difference between points A and B is

−ΔV = −(VB − VA) = VA − VB = VAB.

Entering this into the expression for work yields

W = qVAB.

Work is W = F→ · d→ = Fd cos θ ; here cos θ = 1 , since the path is parallel to the field. Thus, W = Fd . Since

F = qE , we see that W = qEd .

Substituting this expression for work into the previous equation gives

qEd = qVAB.

The charge cancels, so we obtain for the voltage between points A and B
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VAB = Ed

E = VAB
d

⎫

⎭
⎬(uniform E-field on y)

where d is the distance from A to B, or the distance between the plates in Figure 7.14. Note that this equation implies that
the units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus,
the following relation among units is valid:

1 N / C = 1 V / m.

Furthermore, we may extend this to the integral form. Substituting Equation 7.5 into our definition for the potential
difference between points A and B, we obtain

VBA = VB − VA = −∫
R

B
E→ · d l→ + ∫

R

A
E→ · d l→

which simplifies to

VB − VA = −∫
A

B
E→ · d l→ .

As a demonstration, from this we may calculate the potential difference between two points (A and B) equidistant from a
point charge q at the origin, as shown in Figure 7.15.

Figure 7.15 The arc for calculating the potential difference
between two points that are equidistant from a point charge at
the origin.

To do this, we integrate around an arc of the circle of constant radius r between A and B, which means we let

d l→ = rφ̂dφ, while using E→ = kq
r2 r̂ . Thus,

(7.7)
ΔVBA = VB − VA = −∫

A

B
E→ · d l→

for this system becomes

VB − VA = −⌠
⌡A

B
kq
r2 r̂ · r φ̂dφ.

However, r̂ · φ̂ = 0 and therefore

VB − VA = 0.

This result, that there is no difference in potential along a constant radius from a point charge, will come in handy when we
map potentials.
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Example 7.7

What Is the Highest Voltage Possible between Two Plates?

Dry air can support a maximum electric field strength of about 3.0 × 106 V/m. Above that value, the field

creates enough ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the
field. What, then, is the maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy

We are given the maximum electric field E between the plates and the distance d between them. We can use the
equation VAB = Ed to calculate the maximum voltage.

Solution

The potential difference or voltage between the plates is

VAB = Ed.

Entering the given values for E and d gives

VAB = (3.0 × 106 V/m)(0.025 m) = 7.5 × 104 V

or

VAB = 75 kV.

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Significance

One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5-cm (1-in.)
gap, or 150 kV for a 5-cm spark. This limits the voltages that can exist between conductors, perhaps on a power
transmission line. A smaller voltage can cause a spark if there are spines on the surface, since sharp points
have larger field strengths than smooth surfaces. Humid air breaks down at a lower field strength, meaning that
a smaller voltage will make a spark jump through humid air. The largest voltages can be built up with static
electricity on dry days (Figure 7.16).

Figure 7.16 A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as
they pass through the gas between the plates allows a spark to jump. The sparks are perpendicular to the plates,
following electric field lines between them. The potential difference between adjacent plates is not high enough to
cause sparks without the ionization produced by particles from accelerator experiments (or cosmic rays). This form of
detector is now archaic and no longer in use except for demonstration purposes. (credit b: modification of work by Jack
Collins)
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Example 7.8

Field and Force inside an Electron Gun

An electron gun (Figure 7.13) has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy.
(a) What is the electric field strength between the plates? (b) What force would this field exert on a piece of plastic
with a 0.500-µC charge that gets between the plates?

Strategy

Since the voltage and plate separation are given, the electric field strength can be calculated directly from

the expression E = VAB
d . Once we know the electric field strength, we can find the force on a charge by

using F→ = q E→ . Since the electric field is in only one direction, we can write this equation in terms of the

magnitudes, F = qE .

Solution
a. The expression for the magnitude of the electric field between two uniform metal plates is

E = VAB
d .

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0
kV. Entering this value for VAB and the plate separation of 0.0400 m, we obtain

E = 25.0 kV
0.0400 m = 6.25 × 105 V/m.

b. The magnitude of the force on a charge in an electric field is obtained from the equation

F = qE.

Substituting known values gives

F = (0.500 × 10−6 C)(6.25 × 105 V/m) = 0.313 N.

Significance

Note that the units are newtons, since 1 V/m = 1 N/C . Because the electric field is uniform between the plates,

the force on the charge is the same no matter where the charge is located between the plates.

Example 7.9

Calculating Potential of a Point Charge

Given a point charge q = + 2.0 nC at the origin, calculate the potential difference between point P1 a distance

a = 4.0 cm from q, and P2 a distance b = 12.0 cm from q, where the two points have an angle of φ = 24°
between them (Figure 7.17).
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7.7

Figure 7.17 Find the difference in potential between P1 and

P2 .

Strategy

Do this in two steps. The first step is to use VB − VA = −∫
A

B
E→ · d l→ and let A = a = 4.0 cm and

B = b = 12.0 cm, with d l→ = d r→ = r̂ dr and E→ = kq
r2 r̂ . Then perform the integral. The second step is

to integrate VB − VA = −∫
A

B
E→ · d l→ around an arc of constant radius r, which means we let d l→ = rφ̂dφ

with limits 0 ≤ φ ≤ 24°, still using E→ = kq
r2 r̂ . Then add the two results together.

Solution

For the first part, VB − VA = −∫
A

B
E→ · d l→ for this system becomes Vb − Va = −⌠

⌡a

b
kq
r2 r̂ · r̂ dr which

computes to

ΔV = −⌠
⌡a

b
kq
r2dr = kq⎡

⎣
1
a − 1

b
⎤
⎦

= ⎛
⎝8.99 × 109 Nm2 /C2⎞

⎠
⎛
⎝2.0 × 10−9 C⎞

⎠
⎡
⎣

1
0.040 m − 1

0.12 m
⎤
⎦ = 300 V.

For the second step, VB − VA = −∫
A

B
E→ · d l→ becomes ΔV = −⌠

⌡0

24°
kq
r2 r̂ · r φ̂dφ , but r̂ · φ̂ = 0 and

therefore ΔV = 0. Adding the two parts together, we get 300 V.

Significance

We have demonstrated the use of the integral form of the potential difference to obtain a numerical result. Notice
that, in this particular system, we could have also used the formula for the potential due to a point charge at the
two points and simply taken the difference.

Check Your Understanding From the examples, how does the energy of a lightning strike vary with the
height of the clouds from the ground? Consider the cloud-ground system to be two parallel plates.

Before presenting problems involving electrostatics, we suggest a problem-solving strategy to follow for this topic.

Problem-Solving Strategy: Electrostatics

1. Examine the situation to determine if static electricity is involved; this may concern separated stationary
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charges, the forces among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
Determine whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body
diagram, using electric field lines.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important
to distinguish the Coulomb force F from the electric field E, for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as
requested.

6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved
reasonable?

7.3 | Calculations of Electric Potential

Learning Objectives

By the end of this section, you will be able to:

• Calculate the potential due to a point charge

• Calculate the potential of a system of multiple point charges

• Describe an electric dipole

• Define dipole moment

• Calculate the potential of a continuous charge distribution

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical charge
distributions (such as charge on a metal sphere) create external electric fields exactly like a point charge. The electric
potential due to a point charge is, thus, a case we need to consider.

We can use calculus to find the work needed to move a test charge q from a large distance away to a distance of r from a
point charge q. Noting the connection between work and potential W = −qΔV , as in the last section, we can obtain the

following result.

Electric Potential V of a Point Charge

The electric potential V of a point charge is given by

(7.8)V = kq
r (point charge)

where k is a constant equal to 8.99 × 109 N · m2 /C2.

The potential at infinity is chosen to be zero. Thus, V for a point charge decreases with distance, whereas E→ for a point

charge decreases with distance squared:

E = F
qt

= kq
r2 .

Recall that the electric potential V is a scalar and has no direction, whereas the electric field E→ is a vector. To find the

voltage due to a combination of point charges, you add the individual voltages as numbers. To find the total electric field,
you must add the individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact

that V is closely associated with energy, a scalar, whereas E→ is closely associated with force, a vector.

Chapter 7 | Electric Potential 305



Example 7.10

What Voltage Is Produced by a Small Charge on a Metal Sphere?

Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb (µC) range. What is the

voltage 5.00 cm away from the center of a 1-cm-diameter solid metal sphere that has a –3.00-nC static charge?

Strategy

As we discussed in Electric Charges and Fields, charge on a metal sphere spreads out uniformly and
produces a field like that of a point charge located at its center. Thus, we can find the voltage using the equation

V = kq
r .

Solution

Entering known values into the expression for the potential of a point charge, we obtain

V = kq
r = ⎛

⎝8.99 × 109 N · m2 /C2⎞
⎠
⎛
⎝

−3.00 × 10−9 C
5.00 × 10−2 m

⎞
⎠ = −539 V.

Significance

The negative value for voltage means a positive charge would be attracted from a larger distance, since the
potential is lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as
expected.

Example 7.11

What Is the Excess Charge on a Van de Graaff Generator?

A demonstration Van de Graaff generator has a 25.0-cm-diameter metal sphere that produces a voltage of 100 kV
near its surface (Figure 7.18). What excess charge resides on the sphere? (Assume that each numerical value
here is shown with three significant figures.)
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7.8

Figure 7.18 The voltage of this demonstration Van de Graaff
generator is measured between the charged sphere and ground.
Earth’s potential is taken to be zero as a reference. The potential
of the charged conducting sphere is the same as that of an equal
point charge at its center.

Strategy

The potential on the surface is the same as that of a point charge at the center of the sphere, 12.5 cm away. (The
radius of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation

V = kq
r .

Solution

Solving for q and entering known values gives

q = rV
k =

(0.125 m)⎛
⎝100 × 103 V⎞

⎠

8.99 × 109 N · m2 /C2 = 1.39 × 10−6 C = 1.39 µC.

Significance

This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is
difficult to store isolated charges.

Check Your Understanding What is the potential inside the metal sphere in Example 7.10?

The voltages in both of these examples could be measured with a meter that compares the measured potential with ground
potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential
difference between two points that is of importance, and very often there is a tacit assumption that some reference point,
such as Earth or a very distant point, is at zero potential. As noted earlier, this is analogous to taking sea level as h = 0
when considering gravitational potential energy Ug = mgh .
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Systems of Multiple Point Charges
Just as the electric field obeys a superposition principle, so does the electric potential. Consider a system consisting of N
charges q1, q2, …, qN. What is the net electric potential V at a space point P from these charges? Each of these charges

is a source charge that produces its own electric potential at point P, independent of whatever other changes may be doing.
Let V1, V2, …, VN be the electric potentials at P produced by the charges q1, q2, …, qN, respectively. Then, the net

electric potential VP at that point is equal to the sum of these individual electric potentials. You can easily show this by

calculating the potential energy of a test charge when you bring the test charge from the reference point at infinity to point
P:

VP = V1 + V2 + ⋯ + VN = ∑
1

N
Vi.

Note that electric potential follows the same principle of superposition as electric field and electric potential energy. To
show this more explicitly, note that a test charge qi at the point P in space has distances of r1, r2, …, rN from the N

charges fixed in space above, as shown in Figure 7.19. Using our formula for the potential of a point charge for each of
these (assumed to be point) charges, we find that

(7.9)
VP = ∑

1

N
kqi

ri
= k∑

1

N qi
ri

.

Therefore, the electric potential energy of the test charge is

UP = qt VP = qt k∑
1

N qi
ri

,

which is the same as the work to bring the test charge into the system, as found in the first section of the chapter.

Figure 7.19 Notation for direct distances from charges to a
space point P.

The Electric Dipole
An electric dipole is a system of two equal but opposite charges a fixed distance apart. This system is used to model many
real-world systems, including atomic and molecular interactions. One of these systems is the water molecule, under certain
circumstances. These circumstances are met inside a microwave oven, where electric fields with alternating directions make
the water molecules change orientation. This vibration is the same as heat at the molecular level.

Example 7.12

Electric Potential of a Dipole

Consider the dipole in Figure 7.20 with the charge magnitude of q = 3.0 nC and separation distance

d = 4.0 cm. What is the potential at the following locations in space? (a) (0, 0, 1.0 cm); (b) (0, 0, –5.0 cm); (c)

(3.0 cm, 0, 2.0 cm).

308 Chapter 7 | Electric Potential

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



7.9

Figure 7.20 A general diagram of an electric dipole, and the
notation for the distances from the individual charges to a point
P in space.

Strategy

Apply VP = k∑
1

N qi
ri

to each of these three points.

Solution

a. VP = k∑
1

N qi
ri

= (9.0 × 109 N · m2 /C2)⎛⎝
3.0 nC

0.010 m − 3.0 nC
0.030 m

⎞
⎠ = 1.8 × 103 V

b. VP = k∑
1

N qi
ri

= (9.0 × 109 N · m2 /C2)⎛⎝
3.0 nC

0.070 m − 3.0 nC
0.030 m

⎞
⎠ = −5.1 × 102 V

c. VP = k∑
1

N qi
ri

= (9.0 × 109 N · m2 /C2)⎛⎝
3.0 nC

0.030 m − 3.0 nC
0.050 m

⎞
⎠ = 3.6 × 102 V

Significance

Note that evaluating potential is significantly simpler than electric field, due to potential being a scalar instead of
a vector.

Check Your Understanding What is the potential on the x-axis? The z-axis?

Now let us consider the special case when the distance of the point P from the dipole is much greater than the distance
between the charges in the dipole, r ≫ d; for example, when we are interested in the electric potential due to a polarized

molecule such as a water molecule. This is not so far (infinity) that we can simply treat the potential as zero, but the distance
is great enough that we can simplify our calculations relative to the previous example.

We start by noting that in Figure 7.21 the potential is given by
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VP = V+ + V− = k⎛
⎝

q
r+

− q
r−

⎞
⎠

where

r± = x2 + ⎛
⎝z ∓ d

2
⎞
⎠
2
.

Figure 7.21 A general diagram of an electric dipole, and the
notation for the distances from the individual charges to a point P
in space.

This is still the exact formula. To take advantage of the fact that r ≫ d, we rewrite the radii in terms of polar coordinates,

with x = r sin θ and z = r cos θ . This gives us

r± = r2 sin2 θ + ⎛
⎝r cos θ ∓ d

2
⎞
⎠
2
.

We can simplify this expression by pulling r out of the root,

r± = r sin2 θ + ⎛
⎝cos θ ∓ d

2r
⎞
⎠
2

and then multiplying out the parentheses

r± = r sin2 θ + cos2 θ ∓ cos θd
r + ⎛

⎝
d
2r

⎞
⎠
2

= r 1 ∓ cos θd
r + ⎛

⎝
d
2r

⎞
⎠
2
.

The last term in the root is small enough to be negligible (remember r ≫ d, and hence (d/r)2 is extremely small,

effectively zero to the level we will probably be measuring), leaving us with

r± = r 1 ∓ cos θd
r .

Using the binomial approximation (a standard result from the mathematics of series, when α is small)

1
1 ∓ α

≈ 1 ± α
2

and substituting this into our formula for VP , we get

VP = k⎡
⎣
q
r

⎛
⎝1 + d cos θ

2r
⎞
⎠ − q

r
⎛
⎝1 − d cos θ

2r
⎞
⎠
⎤
⎦ = kqd cos θ

r2 .

This may be written more conveniently if we define a new quantity, the electric dipole moment,
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(7.10)p→ = q d→ ,

where these vectors point from the negative to the positive charge. Note that this has magnitude qd. This quantity allows us
to write the potential at point P due to a dipole at the origin as

(7.11)
VP = k p→ · r̂

r2 .

A diagram of the application of this formula is shown in Figure 7.22.

Figure 7.22 The geometry for the application of the potential
of a dipole.

There are also higher-order moments, for quadrupoles, octupoles, and so on. You will see these in future classes.

Potential of Continuous Charge Distributions
We have been working with point charges a great deal, but what about continuous charge distributions? Recall from
Equation 7.9 that

VP = k∑ qi
ri

.

We may treat a continuous charge distribution as a collection of infinitesimally separated individual points. This yields the
integral

(7.12)VP = k∫ dq
r

for the potential at a point P. Note that r is the distance from each individual point in the charge distribution to the point P.
As we saw in Electric Charges and Fields, the infinitesimal charges are given by

dq =
⎧

⎩
⎨

λ dl (one dimension)
σ dA (two dimensions)
ρ dV (three dimensions)

where λ is linear charge density, σ is the charge per unit area, and ρ is the charge per unit volume.
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Example 7.13

Potential of a Line of Charge

Find the electric potential of a uniformly charged, nonconducting wire with linear density λ (coulomb/meter)

and length L at a point that lies on a line that divides the wire into two equal parts.

Strategy

To set up the problem, we choose Cartesian coordinates in such a way as to exploit the symmetry in the problem
as much as possible. We place the origin at the center of the wire and orient the y-axis along the wire so that the
ends of the wire are at y = ± L/2 . The field point P is in the xy-plane and since the choice of axes is up to us,

we choose the x-axis to pass through the field point P, as shown in Figure 7.23.

Figure 7.23 We want to calculate the electric potential due to
a line of charge.

Solution

Consider a small element of the charge distribution between y and y + dy . The charge in this cell is dq = λ dy

and the distance from the cell to the field point P is x2 + y2. Therefore, the potential becomes

VP = k
⌠

⌡
⎮dq

r = k⌠
⌡−L/2

L/2
λdy

x2 + y2
= kλ⎡

⎣ln
⎛
⎝y + y2 + x2⎞

⎠
⎤
⎦−L/2

L/2

= kλ
⎡

⎣
⎢ln

⎛

⎝
⎜⎛
⎝
L
2

⎞
⎠ + ⎛

⎝
L
2

⎞
⎠
2

+ x2
⎞

⎠
⎟ − ln

⎛

⎝
⎜⎛
⎝−

L
2

⎞
⎠ + ⎛

⎝−
L
2

⎞
⎠
2

+ x2
⎞

⎠
⎟
⎤

⎦
⎥

= kλln
⎡

⎣
⎢ L + L2 + 4x2

−L + L2 + 4x2

⎤

⎦
⎥.

Significance

Note that this was simpler than the equivalent problem for electric field, due to the use of scalar quantities. Recall
that we expect the zero level of the potential to be at infinity, when we have a finite charge. To examine this, we
take the limit of the above potential as x approaches infinity; in this case, the terms inside the natural log approach
one, and hence the potential approaches zero in this limit. Note that we could have done this problem equivalently
in cylindrical coordinates; the only effect would be to substitute r for x and z for y.
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Example 7.14

Potential Due to a Ring of Charge

A ring has a uniform charge density λ , with units of coulomb per unit meter of arc. Find the electric potential at

a point on the axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle.
We divide the circle into infinitesimal elements shaped as arcs on the circle and use cylindrical coordinates shown
in Figure 7.24.

Figure 7.24 We want to calculate the electric potential due to
a ring of charge.

Solution

A general element of the arc between θ and θ + dθ is of length Rdθ and therefore contains a charge equal to

λRdθ. The element is at a distance of z2 + R2 from P, and therefore the potential is

VP = k∫ dq
r = k⌠

⌡0

2π
λRdθ
z2 + R2

= kλR
z2 + R2∫0

2π
dθ = 2πkλR

z2 + R2
= k qtot

z2 + R2
.

Significance

This result is expected because every element of the ring is at the same distance from point P. The net potential

at P is that of the total charge placed at the common distance, z2 + R2 .

Example 7.15

Potential Due to a Uniform Disk of Charge

A disk of radius R has a uniform charge density σ , with units of coulomb meter squared. Find the electric

potential at any point on the axis passing through the center of the disk.

Strategy

We divide the disk into ring-shaped cells, and make use of the result for a ring worked out in the previous
example, then integrate over r in addition to θ . This is shown in Figure 7.25.

Chapter 7 | Electric Potential 313



Figure 7.25 We want to calculate the electric potential due to
a disk of charge.

Solution

An infinitesimal width cell between cylindrical coordinates r and r + dr shown in Figure 7.25 will be a ring of

charges whose electric potential dVP at the field point has the following expression

dVP = k dq
z2 + r2

where

dq = σ2πrdr.

The superposition of potential of all the infinitesimal rings that make up the disk gives the net potential at point
P. This is accomplished by integrating from r = 0 to r = R :

VP = ∫ dVP = k2πσ⌠
⌡0

R
r dr

z2 + r2
,

= k2πσ⎛
⎝ z2 + R2 − z2⎞

⎠.

Significance

The basic procedure for a disk is to first integrate around θ and then over r. This has been demonstrated for

uniform (constant) charge density. Often, the charge density will vary with r, and then the last integral will give
different results.

Example 7.16

Potential Due to an Infinite Charged Wire

Find the electric potential due to an infinitely long uniformly charged wire.

Strategy

Since we have already worked out the potential of a finite wire of length L in Example 7.7, we might wonder if
taking L → ∞ in our previous result will work:
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7.10

VP = lim
L → ∞

kλln
⎛

⎝
⎜ L + L2 + 4x2

−L + L2 + 4x2

⎞

⎠
⎟.

However, this limit does not exist because the argument of the logarithm becomes [2/0] as L → ∞ , so this way

of finding V of an infinite wire does not work. The reason for this problem may be traced to the fact that the
charges are not localized in some space but continue to infinity in the direction of the wire. Hence, our (unspoken)
assumption that zero potential must be an infinite distance from the wire is no longer valid.

To avoid this difficulty in calculating limits, let us use the definition of potential by integrating over the electric
field from the previous section, and the value of the electric field from this charge configuration from the previous
chapter.

Solution

We use the integral

VP = −∫
R

P
E→ · d l→

where R is a finite distance from the line of charge, as shown in Figure 7.26.

Figure 7.26 Points of interest for calculating the potential of
an infinite line of charge.

With this setup, we use E→ P = 2kλ1
s ŝ and d l→ = d s→ to obtain

VP − VR = −∫
R

P
2kλ1

sds = −2kλlnsP
sR

.

Now, if we define the reference potential VR = 0 at sR = 1 m, this simplifies to

VP = −2kλ ln sP.

Note that this form of the potential is quite usable; it is 0 at 1 m and is undefined at infinity, which is why we
could not use the latter as a reference.

Significance

Although calculating potential directly can be quite convenient, we just found a system for which this strategy
does not work well. In such cases, going back to the definition of potential in terms of the electric field may offer
a way forward.

Check Your Understanding What is the potential on the axis of a nonuniform ring of charge, where the
charge density is λ(θ) = λ cos θ ?
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7.4 | Determining Field from Potential

Learning Objectives

By the end of this section, you will be able to:

• Explain how to calculate the electric field in a system from the given potential

• Calculate the electric field in a given direction from a given potential

• Calculate the electric field throughout space from a given potential

Recall that we were able, in certain systems, to calculate the potential by integrating over the electric field. As you may
already suspect, this means that we may calculate the electric field by taking derivatives of the potential, although going

from a scalar to a vector quantity introduces some interesting wrinkles. We frequently need E→ to calculate the force in a

system; since it is often simpler to calculate the potential directly, there are systems in which it is useful to calculate V and

then derive E→ from it.

In general, regardless of whether the electric field is uniform, it points in the direction of decreasing potential, because

the force on a positive charge is in the direction of E→ and also in the direction of lower potential V. Furthermore, the

magnitude of E→ equals the rate of decrease of V with distance. The faster V decreases over distance, the greater the

electric field. This gives us the following result.

Relationship between Voltage and Uniform Electric Field

In equation form, the relationship between voltage and uniform electric field is

E = − ΔV
Δs

where Δs is the distance over which the change in potential ΔV takes place. The minus sign tells us that E points in

the direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric
potential.

For continually changing potentials, ΔV and Δs become infinitesimals, and we need differential calculus to determine

the electric field. As shown in Figure 7.27, if we treat the distance Δs as very small so that the electric field is essentially

constant over it, we find that

Es = − dV
ds .

Figure 7.27 The electric field component along the

displacement Δs is given by E = − ΔV
Δs . Note that A and B

are assumed to be so close together that the field is constant
along Δs .

Therefore, the electric field components in the Cartesian directions are given by
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(7.13)Ex = − ∂V
∂ x , Ey = − ∂V

∂ y , Ez = − ∂V
∂z .

This allows us to define the “grad” or “del” vector operator, which allows us to compute the gradient in one step. In
Cartesian coordinates, it takes the form

(7.14)
∇→ = i

^ ∂
∂ x + j

^ ∂
∂ y + k̂ ∂

∂z.

With this notation, we can calculate the electric field from the potential with

(7.15)E→ = − ∇→ V ,

a process we call calculating the gradient of the potential.

If we have a system with either cylindrical or spherical symmetry, we only need to use the del operator in the appropriate
coordinates:

(7.16)Cylindrical: ∇→ = r̂ ∂
∂r + φ̂1

r
∂

∂φ + ẑ ∂
∂z

(7.17)Spherical: ∇→ = r̂ ∂
∂r + θ

^ 1
r

∂
∂θ + φ̂ 1

r sin θ
∂

∂φ

Example 7.17

Electric Field of a Point Charge

Calculate the electric field of a point charge from the potential.

Strategy

The potential is known to be V = kq
r , which has a spherical symmetry. Therefore, we use the spherical del

operator in the formula E→ = − ∇→ V .

Solution

Performing this calculation gives us

E→ = −⎛
⎝ r̂ ∂

∂r + θ
^ 1

r
∂
∂θ + φ̂ 1

r sin θ
∂

∂φ
⎞
⎠kq

r = −kq⎛
⎝ r̂ ∂

∂r
1
r + θ

^ 1
r

∂
∂θ

1
r + φ̂ 1

r sin θ
∂

∂φ
1
r
⎞
⎠.

This equation simplifies to

E→ = −kq⎛
⎝ r̂ −1

r2 + θ
^

0 + φ̂0⎞
⎠ = k q

r2 r̂

as expected.
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Significance

We not only obtained the equation for the electric field of a point particle that we’ve seen before, we also have a

demonstration that E→ points in the direction of decreasing potential, as shown in Figure 7.28.

Figure 7.28 Electric field vectors inside and outside a uniformly charged
sphere.

Example 7.18

Electric Field of a Ring of Charge

Use the potential found in Example 7.8 to calculate the electric field along the axis of a ring of charge (Figure
7.29).
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7.11

Figure 7.29 We want to calculate the electric field from the
electric potential due to a ring charge.

Strategy

In this case, we are only interested in one dimension, the z-axis. Therefore, we use Ez = − ∂V
∂z

with the potential V = k qtot

z2 + R2
found previously.

Solution

Taking the derivative of the potential yields

Ez = − ∂
∂z

kqtot

z2 + R2
= k qtot z

⎛
⎝z2 + R2⎞

⎠
3/2.

Significance

Again, this matches the equation for the electric field found previously. It also demonstrates a system in which
using the full del operator is not necessary.

Check Your Understanding Which coordinate system would you use to calculate the electric field of a
dipole?

7.5 | Equipotential Surfaces and Conductors

Learning Objectives

By the end of this section, you will be able to:

• Define equipotential surfaces and equipotential lines

• Explain the relationship between equipotential lines and electric field lines

• Map equipotential lines for one or two point charges

• Describe the potential of a conductor

• Compare and contrast equipotential lines and elevation lines on topographic maps

We can represent electric potentials (voltages) pictorially, just as we drew pictures to illustrate electric fields. This is not
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surprising, since the two concepts are related. Consider Figure 7.30, which shows an isolated positive point charge and
its electric field lines, which radiate out from a positive charge and terminate on negative charges. We use red arrows to
represent the magnitude and direction of the electric field, and we use black lines to represent places where the electric
potential is constant. These are called equipotential surfaces in three dimensions, or equipotential lines in two dimensions.
The term equipotential is also used as a noun, referring to an equipotential line or surface. The potential for a point charge
is the same anywhere on an imaginary sphere of radius r surrounding the charge. This is true because the potential for a
point charge is given by V = kq/r and thus has the same value at any point that is a given distance r from the charge. An

equipotential sphere is a circle in the two-dimensional view of Figure 7.30. Because the electric field lines point radially
away from the charge, they are perpendicular to the equipotential lines.

Figure 7.30 An isolated point charge Q with its electric field
lines in red and equipotential lines in black. The potential is the
same along each equipotential line, meaning that no work is
required to move a charge anywhere along one of those lines.
Work is needed to move a charge from one equipotential line to
another. Equipotential lines are perpendicular to electric field
lines in every case. For a three-dimensional version, explore the
first media link.

It is important to note that equipotential lines are always perpendicular to electric field lines. No work is required to move
a charge along an equipotential, since ΔV = 0 . Thus, the work is

W = −ΔU = −qΔV = 0.

Work is zero if the direction of the force is perpendicular to the displacement. Force is in the same direction as E, so motion
along an equipotential must be perpendicular to E. More precisely, work is related to the electric field by

W = F→ ⋅ d→ = q E→ ⋅ d→ = qEd cos θ = 0.

Note that in this equation, E and F symbolize the magnitudes of the electric field and force, respectively. Neither q nor E
is zero; d is also not zero. So cos θ must be 0, meaning θ must be 90º . In other words, motion along an equipotential is

perpendicular to E.

One of the rules for static electric fields and conductors is that the electric field must be perpendicular to the surface of any
conductor. This implies that a conductor is an equipotential surface in static situations. There can be no voltage difference
across the surface of a conductor, or charges will flow. One of the uses of this fact is that a conductor can be fixed at what
we consider zero volts by connecting it to the earth with a good conductor—a process called grounding. Grounding can be
a useful safety tool. For example, grounding the metal case of an electrical appliance ensures that it is at zero volts relative
to Earth.

Because a conductor is an equipotential, it can replace any equipotential surface. For example, in Figure 7.30, a charged
spherical conductor can replace the point charge, and the electric field and potential surfaces outside of it will be unchanged,
confirming the contention that a spherical charge distribution is equivalent to a point charge at its center.

Figure 7.31 shows the electric field and equipotential lines for two equal and opposite charges. Given the electric field
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lines, the equipotential lines can be drawn simply by making them perpendicular to the electric field lines. Conversely,
given the equipotential lines, as in Figure 7.32(a), the electric field lines can be drawn by making them perpendicular to
the equipotentials, as in Figure 7.32(b).

Figure 7.31 The electric field lines and equipotential lines for two equal but
opposite charges. The equipotential lines can be drawn by making them
perpendicular to the electric field lines, if those are known. Note that the
potential is greatest (most positive) near the positive charge and least (most
negative) near the negative charge. For a three-dimensional version, explore the
first media link.

Figure 7.32 (a) These equipotential lines might be measured with a voltmeter in a laboratory experiment. (b) The
corresponding electric field lines are found by drawing them perpendicular to the equipotentials. Note that these fields are
consistent with two equal negative charges. For a three-dimensional version, play with the first media link.

To improve your intuition, we show a three-dimensional variant of the potential in a system with two opposing charges.
Figure 7.33 displays a three-dimensional map of electric potential, where lines on the map are for equipotential surfaces.
The hill is at the positive charge, and the trough is at the negative charge. The potential is zero far away from the charges.
Note that the cut off at a particular potential implies that the charges are on conducting spheres with a finite radius.
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Figure 7.33 Electric potential map of two opposite charges of
equal magnitude on conducting spheres. The potential is
negative near the negative charge and positive near the positive
charge.

A two-dimensional map of the cross-sectional plane that contains both charges is shown in Figure 7.34. The line that is
equidistant from the two opposite charges corresponds to zero potential, since at the points on the line, the positive potential
from the positive charge cancels the negative potential from the negative charge. Equipotential lines in the cross-sectional
plane are closed loops, which are not necessarily circles, since at each point, the net potential is the sum of the potentials
from each charge.

Figure 7.34 A cross-section of the electric potential map of
two opposite charges of equal magnitude. The potential is
negative near the negative charge and positive near the positive
charge.

View this simulation (https://openstaxcollege.org/l/21equipsurelec) to observe and modify the
equipotential surfaces and electric fields for many standard charge configurations. There’s a lot to explore.

One of the most important cases is that of the familiar parallel conducting plates shown in Figure 7.35. Between the plates,
the equipotentials are evenly spaced and parallel. The same field could be maintained by placing conducting plates at the
equipotential lines at the potentials shown.
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Figure 7.35 The electric field and equipotential lines between
two metal plates. Note that the electric field is perpendicular to
the equipotentials and hence normal to the plates at their surface
as well as in the center of the region between them.

Consider the parallel plates in Figure 7.2. These have equipotential lines that are parallel to the plates in the space between
and evenly spaced. An example of this (with sample values) is given in Figure 7.35. We could draw a similar set of
equipotential isolines for gravity on the hill shown in Figure 7.2. If the hill has any extent at the same slope, the isolines
along that extent would be parallel to each other. Furthermore, in regions of constant slope, the isolines would be evenly
spaced. An example of real topographic lines is shown in Figure 7.36.

Figure 7.36 A topographical map along a ridge has roughly parallel elevation lines, similar to the equipotential lines in Figure
7.35. (a) A topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A
perspective photo of Devil’s Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the
center of the topographical map.
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Example 7.19

Calculating Equipotential Lines

You have seen the equipotential lines of a point charge in Figure 7.30. How do we calculate them? For example,
if we have a +10-nC charge at the origin, what are the equipotential surfaces at which the potential is (a) 100 V,

(b) 50 V, (c) 20 V, and (d) 10 V?

Strategy

Set the equation for the potential of a point charge equal to a constant and solve for the remaining variable(s).
Then calculate values as needed.

Solution

In V = kq
r , let V be a constant. The only remaining variable is r; hence, r = k q

V = constant . Thus, the

equipotential surfaces are spheres about the origin. Their locations are:

a. r = k q
V = ⎛

⎝8.99 × 109 Nm2 /C2⎞
⎠

⎛
⎝10 × 10−9 C⎞

⎠
100 V = 0.90 m ;

b. r = k q
V = ⎛

⎝8.99 × 109 Nm2 /C2⎞
⎠

⎛
⎝10 × 10−9 C⎞

⎠
50 V = 1.8 m ;

c. r = k q
V = ⎛

⎝8.99 × 109 Nm2 /C2⎞
⎠

⎛
⎝10 × 10−9 C⎞

⎠
20 V = 4.5 m ;

d. r = k q
V = ⎛

⎝8.99 × 109 Nm2 /C2⎞
⎠

⎛
⎝10 × 10−9 C⎞

⎠
10 V = 9.0 m .

Significance

This means that equipotential surfaces around a point charge are spheres of constant radius, as shown earlier, with
well-defined locations.

Example 7.20

Potential Difference between Oppositely Charged Parallel Plates

Two large conducting plates carry equal and opposite charges, with a surface charge density σ of magnitude

6.81 × 10−7 C/m2, as shown in Figure 7.37. The separation between the plates is l = 6.50 mm . (a) What

is the electric field between the plates? (b) What is the potential difference between the plates? (c) What is the
distance between equipotential planes which differ by 100 V?
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Figure 7.37 The electric field between oppositely charged
parallel plates. A portion is released at the positive plate.

Strategy

(a) Since the plates are described as “large” and the distance between them is not, we will approximate each of
them as an infinite plane, and apply the result from Gauss’s law in the previous chapter.

(b) Use ΔVAB = −∫
A

B
E→ · d l→ .

(c) Since the electric field is constant, find the ratio of 100 V to the total potential difference; then calculate this
fraction of the distance.

Solution
a. The electric field is directed from the positive to the negative plate as shown in the figure, and its

magnitude is given by

E = σ
ε0

= 6.81 × 10−7 C/m2

8.85 × 10−12 C2 /N · m2 = 7.69 × 104 V/m.

b. To find the potential difference ΔV between the plates, we use a path from the negative to the positive

plate that is directed against the field. The displacement vector d l→ and the electric field E→ are

antiparallel so E→ · d l→ = −E dl. The potential difference between the positive plate and the negative

plate is then

ΔV = −∫ E · dl = E∫ dl = El = (7.69 × 104 V/m)(6.50 × 10−3 m) = 500 V.

c. The total potential difference is 500 V, so 1/5 of the distance between the plates will be the distance
between 100-V potential differences. The distance between the plates is 6.5 mm, so there will be 1.3 mm
between 100-V potential differences.

Significance

You have now seen a numerical calculation of the locations of equipotentials between two charged parallel plates.

Chapter 7 | Electric Potential 325



7.12 Check Your Understanding What are the equipotential surfaces for an infinite line charge?

Distribution of Charges on Conductors
In Example 7.19 with a point charge, we found that the equipotential surfaces were in the form of spheres, with the point
charge at the center. Given that a conducting sphere in electrostatic equilibrium is a spherical equipotential surface, we
should expect that we could replace one of the surfaces in Example 7.19 with a conducting sphere and have an identical
solution outside the sphere. Inside will be rather different, however.

Figure 7.38 An isolated conducting sphere.

To investigate this, consider the isolated conducting sphere of Figure 7.38 that has a radius R and an excess charge q. To
find the electric field both inside and outside the sphere, note that the sphere is isolated, so its surface change distribution

and the electric field of that distribution are spherically symmetric. We can therefore represent the field as E→ = E(r) r̂ .
To calculate E(r), we apply Gauss’s law over a closed spherical surface S of radius r that is concentric with the conducting

sphere. Since r is constant and n̂ = r̂ on the sphere,

∮
S

E→ · n̂ da = E(r)∮ da = E(r) 4πr2.

For r < R , S is within the conductor, so recall from our previous study of Gauss’s law that qenc = 0 and Gauss’s law

gives E(r) = 0 , as expected inside a conductor at equilibrium. If r > R , S encloses the conductor so qenc = q. From

Gauss’s law,

E(r) 4πr2 = q
ε0

.

The electric field of the sphere may therefore be written as

E = 0 (r < R),

E = 1
4πε0

q
r2 r̂ (r ≥ R).

As expected, in the region r ≥ R, the electric field due to a charge q placed on an isolated conducting sphere of radius R

is identical to the electric field of a point charge q located at the center of the sphere.

To find the electric potential inside and outside the sphere, note that for r ≥ R, the potential must be the same as that of

an isolated point charge q located at r = 0 ,

V(r) = 1
4πrε0

q
r (r ≥ R)
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simply due to the similarity of the electric field.

For r < R, E = 0, so V(r) is constant in this region. Since V(R) = q/4πε0 R,

V(r) = 1
4πrε0

q
R (r < R).

We will use this result to show that

σ1 R1 = σ2 R2,

for two conducting spheres of radii R1 and R2 , with surface charge densities σ1 and σ2 respectively, that are connected

by a thin wire, as shown in Figure 7.39. The spheres are sufficiently separated so that each can be treated as if it were
isolated (aside from the wire). Note that the connection by the wire means that this entire system must be an equipotential.

Figure 7.39 Two conducting spheres are connected by a thin conducting wire.

We have just seen that the electrical potential at the surface of an isolated, charged conducting sphere of radius R is

V = 1
4πrε0

q
R.

Now, the spheres are connected by a conductor and are therefore at the same potential; hence

1
4πrε0

q1
R1

= 1
4πrε0

q2
R2

,

and

q1
R1

= q2
R2

.

The net charge on a conducting sphere and its surface charge density are related by q = σ(4πR2). Substituting this equation

into the previous one, we find

σ1 R1 = σ2 R2.

Obviously, two spheres connected by a thin wire do not constitute a typical conductor with a variable radius of curvature.
Nevertheless, this result does at least provide a qualitative idea of how charge density varies over the surface of a conductor.
The equation indicates that where the radius of curvature is large (points B and D in Figure 7.40), σ and E are small.

Similarly, the charges tend to be denser where the curvature of the surface is greater, as demonstrated by the charge
distribution on oddly shaped metal (Figure 7.40). The surface charge density is higher at locations with a small radius of
curvature than at locations with a large radius of curvature.
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Figure 7.40 The surface charge density and the electric field
of a conductor are greater at regions with smaller radii of
curvature.

A practical application of this phenomenon is the lightning rod, which is simply a grounded metal rod with a sharp end
pointing upward. As positive charge accumulates in the ground due to a negatively charged cloud overhead, the electric

field around the sharp point gets very large. When the field reaches a value of approximately 3.0 × 106 N/C (the dielectric

strength of the air), the free ions in the air are accelerated to such high energies that their collisions with air molecules
actually ionize the molecules. The resulting free electrons in the air then flow through the rod to Earth, thereby neutralizing
some of the positive charge. This keeps the electric field between the cloud and the ground from getting large enough to
produce a lightning bolt in the region around the rod.

An important application of electric fields and equipotential lines involves the heart. The heart relies on electrical signals
to maintain its rhythm. The movement of electrical signals causes the chambers of the heart to contract and relax. When
a person has a heart attack, the movement of these electrical signals may be disturbed. An artificial pacemaker and a
defibrillator can be used to initiate the rhythm of electrical signals. The equipotential lines around the heart, the thoracic
region, and the axis of the heart are useful ways of monitoring the structure and functions of the heart. An electrocardiogram
(ECG) measures the small electric signals being generated during the activity of the heart.

Play around with this simulation (https://openstaxcollege.org/l/21pointcharsim) to move point charges
around on the playing field and then view the electric field, voltages, equipotential lines, and more.

7.6 | Applications of Electrostatics

Learning Objectives

By the end of this section, you will be able to:

• Describe some of the many practical applications of electrostatics, including several printing
technologies

• Relate these applications to Newton’s second law and the electric force

The study of electrostatics has proven useful in many areas. This module covers just a few of the many applications of
electrostatics.
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The Van de Graaff Generator
Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high voltage due to
static electricity—they are also used for serious research. The first was built by Robert Van de Graaff in 1931 (based on
original suggestions by Lord Kelvin) for use in nuclear physics research. Figure 7.41 shows a schematic of a large research
version. Van de Graaffs use both smooth and pointed surfaces, and conductors and insulators to generate large static charges
and, hence, large voltages.

A very large excess charge can be deposited on the sphere because it moves quickly to the outer surface. Practical limits
arise because the large electric fields polarize and eventually ionize surrounding materials, creating free charges that
neutralize excess charge or allow it to escape. Nevertheless, voltages of 15 million volts are well within practical limits.

Figure 7.41 Schematic of Van de Graaff generator. A battery
(A) supplies excess positive charge to a pointed conductor, the
points of which spray the charge onto a moving insulating belt
near the bottom. The pointed conductor (B) on top in the large
sphere picks up the charge. (The induced electric field at the
points is so large that it removes the charge from the belt.) This
can be done because the charge does not remain inside the
conducting sphere but moves to its outside surface. An ion
source inside the sphere produces positive ions, which are
accelerated away from the positive sphere to high velocities.

Xerography
Most copy machines use an electrostatic process called xerography—a word coined from the Greek words xeros for dry
and graphos for writing. The heart of the process is shown in simplified form in Figure 7.42.
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Figure 7.42 Xerography is a dry copying process based on electrostatics. The major steps in the
process are the charging of the photoconducting drum, transfer of an image, creating a positive charge
duplicate, attraction of toner to the charged parts of the drum, and transfer of toner to the paper. Not
shown are heat treatment of the paper and cleansing of the drum for the next copy.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron. Selenium is
a substance with an interesting property—it is a photoconductor. That is, selenium is an insulator when in the dark and a
conductor when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative charge is induced
under the thin layer of uniformly positively charged selenium. In the second stage, the surface of the drum is exposed to the
image of whatever is to be copied. In locations where the image is light, the selenium becomes conducting, and the positive
charge is neutralized. In dark areas, the positive charge remains, so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it is attracted to the
positive regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the drum so that it will
pull the toner from the drum. Finally, the paper and electrostatically held toner are passed through heated pressure rollers,
which melt and permanently adhere the toner to the fibers of the paper.

Laser Printers
Laser printers use the xerographic process to make high-quality images on paper, employing a laser to produce an image on
the photoconducting drum as shown in Figure 7.43. In its most common application, the laser printer receives output from
a computer, and it can achieve high-quality output because of the precision with which laser light can be controlled. Many
laser printers do significant information processing, such as making sophisticated letters or fonts, and in the past may have
contained a computer more powerful than the one giving them the raw data to be printed.
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Figure 7.43 In a laser printer, a laser beam is scanned across a photoconducting drum,
leaving a positively charged image. The other steps for charging the drum and
transferring the image to paper are the same as in xerography. Laser light can be very
precisely controlled, enabling laser printers to produce high-quality images.

Ink Jet Printers and Electrostatic Painting
The ink jet printer, commonly used to print computer-generated text and graphics, also employs electrostatics. A nozzle
makes a fine spray of tiny ink droplets, which are then given an electrostatic charge (Figure 7.44).

Once charged, the droplets can be directed, using pairs of charged plates, with great precision to form letters and images on
paper. Ink jet printers can produce color images by using a black jet and three other jets with primary colors, usually cyan,
magenta, and yellow, much as a color television produces color. (This is more difficult with xerography, requiring multiple
drums and toners.)

Figure 7.44 The nozzle of an ink-jet printer produces small ink
droplets, which are sprayed with electrostatic charge. Various computer-
driven devices are then used to direct the droplets to the correct positions
on a page.

Electrostatic painting employs electrostatic charge to spray paint onto oddly shaped surfaces. Mutual repulsion of like
charges causes the paint to fly away from its source. Surface tension forms drops, which are then attracted by unlike
charges to the surface to be painted. Electrostatic painting can reach hard-to-get-to places, applying an even coat in a
controlled manner. If the object is a conductor, the electric field is perpendicular to the surface, tending to bring the drops
in perpendicularly. Corners and points on conductors will receive extra paint. Felt can similarly be applied.

Smoke Precipitators and Electrostatic Air Cleaning
Another important application of electrostatics is found in air cleaners, both large and small. The electrostatic part of the
process places excess (usually positive) charge on smoke, dust, pollen, and other particles in the air and then passes the air
through an oppositely charged grid that attracts and retains the charged particles (Figure 7.45)

Large electrostatic precipitators are used industrially to remove over 99% of the particles from stack gas emissions
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associated with the burning of coal and oil. Home precipitators, often in conjunction with the home heating and air
conditioning system, are very effective in removing polluting particles, irritants, and allergens.

Figure 7.45 (a) Schematic of an electrostatic precipitator. Air is passed through grids of opposite charge. The first grid charges
airborne particles, while the second attracts and collects them. (b) The dramatic effect of electrostatic precipitators is seen by the
absence of smoke from this power plant. (credit b: modification of work by “Cmdalgleish”/Wikimedia Commons)
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CHAPTER 7 REVIEW

KEY TERMS
system of two equal but opposite charges a fixed distance apart

quantity defined as p→ = q d→ for all dipoles, where the vector points from the negative to

positive charge

potential energy per unit charge

the change in potential energy of a charge q moved between two points, divided by the
charge.

potential energy stored in a system of charged objects due to the charges

energy given to a fundamental charge accelerated through a potential difference of one volt

filters that apply charges to particles in the air, then attract those charges to a filter,
removing them from the airstream

two-dimensional representation of an equipotential surface

surface (usually in three dimensions) on which all points are at the same potential

process of attaching a conductor to the earth to ensure that there is no potential difference between it and
Earth

small ink droplets sprayed with an electric charge are controlled by electrostatic plates to create images on
paper

substance that is an insulator until it is exposed to light, when it becomes a conductor

machine that produces a large amount of excess charge, used for experiments with high
voltage

change in potential energy of a charge moved from one point to another, divided by the charge; units of potential
difference are joules per coulomb, known as volt

dry copying process based on electrostatics

KEY EQUATIONS
Potential energy of a two-charge system U(r) = kqQ

r

Work done to assemble a system of charges
W12 ⋯ N = k

2∑
i

N
∑

j

N qi q j
ri j

for i ≠ j

Potential difference ΔV = ΔU
q or ΔU = qΔV

Electric potential
V = U

q = − ∫
R

P
E→ ⋅ d l→

Potential difference between two points
ΔVBA = VB − VA = −∫

A

B
E→ · d l→

Electric potential of a point charge V = kq
r

Electric potential of a system of point charges
VP = k∑

1

N qi
ri
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Electric dipole moment p→ = q d→

Electric potential due to a dipole
VP = k p→ · r̂

r2

Electric potential of a continuous charge distribution VP = k∫ dq
r

Electric field components Ex = − ∂V
∂ x , Ey = − ∂V

∂ y , Ez = − ∂V
∂z

Del operator in Cartesian coordinates
∇→ = i

^ ∂
∂ x + j

^ ∂
∂ y + k̂ ∂

∂z

Electric field as gradient of potential E→ = − ∇→ V

Del operator in cylindrical coordinates ∇→ = r̂ ∂
∂r + φ̂1

r
∂

∂φ + ẑ ∂
∂z

Del operator in spherical coordinates ∇→ = r̂ ∂
∂r + θ

^ 1
r

∂
∂θ + φ̂ 1

r sin θ
∂

∂φ

SUMMARY

7.1 Electric Potential Energy

• The work done to move a charge from point A to B in an electric field is path independent, and the work around a
closed path is zero. Therefore, the electric field and electric force are conservative.

• We can define an electric potential energy, which between point charges is U(r) = kqQ
r , with the zero reference

taken to be at infinity.

• The superposition principle holds for electric potential energy; the potential energy of a system of multiple charges
is the sum of the potential energies of the individual pairs.

7.2 Electric Potential and Potential Difference

• Electric potential is potential energy per unit charge.

• The potential difference between points A and B, VB − VA, that is, the change in potential of a charge q moved

from A to B, is equal to the change in potential energy divided by the charge.

• Potential difference is commonly called voltage, represented by the symbol ΔV :

ΔV = ΔU
q or ΔU = qΔV .

• An electron-volt is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In
equation form,

1 eV = ⎛
⎝1.60 × 10−19 C⎞

⎠(1 V) = ⎛
⎝1.60 × 10−19 C⎞

⎠(1 J/C) = 1.60 × 10−19 J.

7.3 Calculations of Electric Potential

• Electric potential is a scalar whereas electric field is a vector.

• Addition of voltages as numbers gives the voltage due to a combination of point charges, allowing us to use the

principle of superposition: VP = k∑
1

N qi
ri

.

• An electric dipole consists of two equal and opposite charges a fixed distance apart, with a dipole moment
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p→ = q d→ .

• Continuous charge distributions may be calculated with VP = k∫ dq
r .

7.4 Determining Field from Potential

• Just as we may integrate over the electric field to calculate the potential, we may take the derivative of the potential
to calculate the electric field.

• This may be done for individual components of the electric field, or we may calculate the entire electric field vector
with the gradient operator.

7.5 Equipotential Surfaces and Conductors

• An equipotential surface is the collection of points in space that are all at the same potential. Equipotential lines are
the two-dimensional representation of equipotential surfaces.

• Equipotential surfaces are always perpendicular to electric field lines.

• Conductors in static equilibrium are equipotential surfaces.

• Topographic maps may be thought of as showing gravitational equipotential lines.

7.6 Applications of Electrostatics

• Electrostatics is the study of electric fields in static equilibrium.

• In addition to research using equipment such as a Van de Graaff generator, many practical applications of
electrostatics exist, including photocopiers, laser printers, ink jet printers, and electrostatic air filters.

CONCEPTUAL QUESTIONS

7.1 Electric Potential Energy

1. Would electric potential energy be meaningful if the
electric field were not conservative?

2. Why do we need to be careful about work done on the
system versus work done by the system in calculations?

3. Does the order in which we assemble a system of point
charges affect the total work done?

7.2 Electric Potential and Potential Difference

4. Discuss how potential difference and electric field
strength are related. Give an example.

5. What is the strength of the electric field in a region
where the electric potential is constant?

6. If a proton is released from rest in an electric field,
will it move in the direction of increasing or decreasing
potential? Also answer this question for an electron and a
neutron. Explain why.

7. Voltage is the common word for potential difference.
Which term is more descriptive, voltage or potential

difference?

8. If the voltage between two points is zero, can a test
charge be moved between them with zero net work being
done? Can this necessarily be done without exerting a
force? Explain.

9. What is the relationship between voltage and energy?
More precisely, what is the relationship between potential
difference and electric potential energy?

10. Voltages are always measured between two points.
Why?

11. How are units of volts and electron-volts related? How
do they differ?

12. Can a particle move in a direction of increasing
electric potential, yet have its electric potential energy
decrease? Explain

7.3 Calculations of Electric Potential

13. Compare the electric dipole moments of charges ±Q
separated by a distance d and charges ±Q/2 separated by

a distance d/2.
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14. Would Gauss’s law be helpful for determining the
electric field of a dipole? Why?

15. In what region of space is the potential due to a
uniformly charged sphere the same as that of a point
charge? In what region does it differ from that of a point
charge?

16. Can the potential of a nonuniformly charged sphere be
the same as that of a point charge? Explain.

7.4 Determining Field from Potential

17. If the electric field is zero throughout a region, must
the electric potential also be zero in that region?

18. Explain why knowledge of E→ (x, y, z) is not

sufficient to determine V(x,y,z). What about the other way
around?

7.5 Equipotential Surfaces and Conductors

19. If two points are at the same potential, are there any
electric field lines connecting them?

20. Suppose you have a map of equipotential surfaces
spaced 1.0 V apart. What do the distances between the
surfaces in a particular region tell you about the strength of

the E→ in that region?

21. Is the electric potential necessarily constant over the
surface of a conductor?

22. Under electrostatic conditions, the excess charge on a
conductor resides on its surface. Does this mean that all of
the conduction electrons in a conductor are on the surface?

23. Can a positively charged conductor be at a negative
potential? Explain.

24. Can equipotential surfaces intersect?

7.6 Applications of Electrostatics

25. Why are the metal support rods for satellite network
dishes generally grounded?

26. (a) Why are fish reasonably safe in an electrical storm?
(b) Why are swimmers nonetheless ordered to get out of the
water in the same circumstance?

27. What are the similarities and differences between the
processes in a photocopier and an electrostatic
precipitator?

28. About what magnitude of potential is used to charge
the drum of a photocopy machine? A web search for
“xerography” may be of use.

PROBLEMS

7.1 Electric Potential Energy

29. Consider a charge Q1( + 5.0 µC) fixed at a site with

another charge Q2 (charge +3.0 µC , mass 6.0 µg)
moving in the neighboring space. (a) Evaluate the potential
energy of Q2 when it is 4.0 cm from Q1. (b) If Q2 starts

from rest from a point 4.0 cm from Q1, what will be its

speed when it is 8.0 cm from Q1 ? (Note: Q1 is held fixed

in its place.)

30. Two charges Q1( + 2.00 µC) and Q2( + 2.00 µC)
are placed symmetrically along the x-axis at
x = ± 3.00 cm . Consider a charge Q3 of charge

+4.00 µC and mass 10.0 mg moving along the y-axis.

If Q3 starts from rest at y = 2.00 cm, what is its speed

when it reaches y = 4.00 cm?

31. To form a hydrogen atom, a proton is fixed at a point
and an electron is brought from far away to a distance of

0.529 × 10−10 m, the average distance between proton

and electron in a hydrogen atom. How much work is done?

32. (a) What is the average power output of a heart
defibrillator that dissipates 400 J of energy in 10.0 ms?
(b) Considering the high-power output, why doesn’t the
defibrillator produce serious burns?

7.2 Electric Potential and Potential Difference

33. Find the ratio of speeds of an electron and a negative
hydrogen ion (one having an extra electron) accelerated
through the same voltage, assuming non-relativistic final
speeds. Take the mass of the hydrogen ion to be

1.67 × 10−27 kg.

34. An evacuated tube uses an accelerating voltage of 40
kV to accelerate electrons to hit a copper plate and produce
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X-rays. Non-relativistically, what would be the maximum
speed of these electrons?

35. Show that units of V/m and N/C for electric field
strength are indeed equivalent.

36. What is the strength of the electric field between
two parallel conducting plates separated by 1.00 cm and
having a potential difference (voltage) between them of

1.50 × 104 V ?

37. The electric field strength between two parallel
conducting plates separated by 4.00 cm is

7.50 × 104 V/m . (a) What is the potential difference

between the plates? (b) The plate with the lowest potential
is taken to be zero volts. What is the potential 1.00 cm from
that plate and 3.00 cm from the other?

38. The voltage across a membrane forming a cell wall is
80.0 mV and the membrane is 9.00 nm thick. What is the
electric field strength? (The value is surprisingly large, but
correct.) You may assume a uniform electric field.

39. Two parallel conducting plates are separated by 10.0
cm, and one of them is taken to be at zero volts. (a) What
is the electric field strength between them, if the potential
8.00 cm from the zero volt plate (and 2.00 cm from the
other) is 450 V? (b) What is the voltage between the
plates?

40. Find the maximum potential difference between two
parallel conducting plates separated by 0.500 cm of air,
given the maximum sustainable electric field strength in air

to be 3.0 × 106 V/m .

41. An electron is to be accelerated in a uniform electric

field having a strength of 2.00 × 106 V/m. (a) What

energy in keV is given to the electron if it is accelerated
through 0.400 m? (b) Over what distance would it have to
be accelerated to increase its energy by 50.0 GeV?

42. Use the definition of potential difference in terms of
electric field to deduce the formula for potential difference
between r = ra and r = rb for a point charge located at

the origin. Here r is the spherical radial coordinate.

43. The electric field in a region is pointed away from
the z-axis and the magnitude depends upon the distance s
from the axis. The magnitude of the electric field is given as
E = α

s where α is a constant. Find the potential difference

between points P1 and P2 , explicitly stating the path over

which you conduct the integration for the line integral.

44. Singly charged gas ions are accelerated from rest
through a voltage of 13.0 V. At what temperature will the
average kinetic energy of gas molecules be the same as that
given these ions?

7.3 Calculations of Electric Potential

45. A 0.500-cm-diameter plastic sphere, used in a static
electricity demonstration, has a uniformly distributed
40.0-pC charge on its surface. What is the potential near its
surface?

46. How far from a 1.00-µC point charge is the potential

100 V? At what distance is it 2.00 × 102 V?

47. If the potential due to a point charge is 5.00 × 102 V
at a distance of 15.0 m, what are the sign and magnitude of
the charge?

48. In nuclear fission, a nucleus splits roughly in half. (a)

What is the potential 2.00 × 10−14 m from a fragment

that has 46 protons in it? (b) What is the potential energy in
MeV of a similarly charged fragment at this distance?

49. A research Van de Graaff generator has a 2.00-m-
diameter metal sphere with a charge of 5.00 mC on it. (a)
What is the potential near its surface? (b) At what distance
from its center is the potential 1.00 MV? (c) An oxygen
atom with three missing electrons is released near the Van
de Graaff generator. What is its energy in MeV when the
atom is at the distance found in part b?

50. An electrostatic paint sprayer has a 0.200-m-diameter
metal sphere at a potential of 25.0 kV that repels paint
droplets onto a grounded object.

(a) What charge is on the sphere? (b) What charge must a
0.100-mg drop of paint have to arrive at the object with a
speed of 10.0 m/s?

51. (a) What is the potential between two points situated
10 cm and 20 cm from a 3.0-µC point charge? (b) To what

location should the point at 20 cm be moved to increase this
potential difference by a factor of two?

52. Find the potential at points P1, P2, P3, and P4 in
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the diagram due to the two given charges.

53. Two charges –2.0 µC and +2.0 µC are separated by

4.0 cm on the z-axis symmetrically about origin, with the
positive one uppermost. Two space points of interest
P1 and P2 are located 3.0 cm and 30 cm from origin at

an angle 30° with respect to the z-axis. Evaluate electric

potentials at P1 and P2 in two ways: (a) Using the exact

formula for point charges, and (b) using the approximate
dipole potential formula.

54. (a) Plot the potential of a uniformly charged 1-m
rod with 1 C/m charge as a function of the perpendicular
distance from the center. Draw your graph from
s = 0.1 m to s = 1.0 m . (b) On the same graph, plot the

potential of a point charge with a 1-C charge at the origin.
(c) Which potential is stronger near the rod? (d) What
happens to the difference as the distance increases?
Interpret your result.

7.4 Determining Field from Potential

55. Throughout a region, equipotential surfaces are given
by z = constant . The surfaces are equally spaced with

V = 100 V for z = 0.00 m, V = 200 V for

z = 0.50 m, V = 300 V for z = 1.00 m. What is the

electric field in this region?

56. In a particular region, the electric potential is given

by V = −xy2 z + 4xy. What is the electric field in this

region?

57. Calculate the electric field of an infinite line charge,
throughout space.

7.5 Equipotential Surfaces and Conductors

58. Two very large metal plates are placed 2.0 cm apart,
with a potential difference of 12 V between them. Consider
one plate to be at 12 V, and the other at 0 V. (a) Sketch
the equipotential surfaces for 0, 4, 8, and 12 V. (b) Next
sketch in some electric field lines, and confirm that they are

perpendicular to the equipotential lines.

59. A very large sheet of insulating material has had an
excess of electrons placed on it to a surface charge density

of –3.00 nC/m2 . (a) As the distance from the sheet

increases, does the potential increase or decrease? Can you
explain why without any calculations? Does the location
of your reference point matter? (b) What is the shape of
the equipotential surfaces? (c) What is the spacing between
surfaces that differ by 1.00 V?

60. A metallic sphere of radius 2.0 cm is charged with
+5.0-µC charge, which spreads on the surface of the

sphere uniformly. The metallic sphere stands on an
insulated stand and is surrounded by a larger metallic
spherical shell, of inner radius 5.0 cm and outer radius 6.0
cm. Now, a charge of −5.0-µC is placed on the inside

of the spherical shell, which spreads out uniformly on the
inside surface of the shell. If potential is zero at infinity,
what is the potential of (a) the spherical shell, (b) the
sphere, (c) the space between the two, (d) inside the sphere,
and (e) outside the shell?

61. Two large charged plates of charge density

±30 µC/m2 face each other at a separation of 5.0 mm. (a)

Find the electric potential everywhere. (b) An electron is
released from rest at the negative plate; with what speed
will it strike the positive plate?

62. A long cylinder of aluminum of radius R meters is
charged so that it has a uniform charge per unit length on
its surface of λ .

(a) Find the electric field inside and outside the cylinder. (b)
Find the electric potential inside and outside the cylinder.
(c) Plot electric field and electric potential as a function of
distance from the center of the rod.
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63. Two parallel plates 10 cm on a side are given equal and

opposite charges of magnitude 5.0 × 10−9 C. The plates

are 1.5 mm apart. What is the potential difference between
the plates?

64. The surface charge density on a long straight metallic
pipe is σ . What is the electric potential outside and inside

the pipe? Assume the pipe has a diameter of 2a.

65. Concentric conducting spherical shells carry charges
Q and –Q, respectively. The inner shell has negligible
thickness. What is the potential difference between the
shells?

66. Shown below are two concentric spherical shells of
negligible thicknesses and radii R1 and R2. The inner

and outer shell carry net charges q1 and q2, respectively,

where both q1 and q2 are positive. What is the electric

potential in the regions (a) r < R1, (b) R1 < r < R2,
and (c) r > R2?

67. A solid cylindrical conductor of radius a is surrounded
by a concentric cylindrical shell of inner radius b. The solid
cylinder and the shell carry charges Q and –Q, respectively.
Assuming that the length L of both conductors is much
greater than a or b, what is the potential difference between
the two conductors?

7.6 Applications of Electrostatics

68. (a) What is the electric field 5.00 m from the center
of the terminal of a Van de Graaff with a 3.00-mC charge,
noting that the field is equivalent to that of a point charge at
the center of the terminal? (b) At this distance, what force
does the field exert on a 2.00-µC charge on the Van de

Graaff’s belt?

69. (a) What is the direction and magnitude of an electric
field that supports the weight of a free electron near the
surface of Earth? (b) Discuss what the small value for
this field implies regarding the relative strength of the
gravitational and electrostatic forces.

70. A simple and common technique for accelerating
electrons is shown in Figure 7.46, where there is a
uniform electric field between two plates. Electrons are
released, usually from a hot filament, near the negative
plate, and there is a small hole in the positive plate that
allows the electrons to continue moving. (a) Calculate the
acceleration of the electron if the field strength is

2.50 × 104 N/C . (b) Explain why the electron will not be

pulled back to the positive plate once it moves through the
hole.
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Figure 7.46 Parallel conducting plates with opposite charges
on them create a relatively uniform electric field used to
accelerate electrons to the right. Those that go through the hole
can be used to make a TV or computer screen glow or to
produce X- rays.

71. In a Geiger counter, a thin metallic wire at the center
of a metallic tube is kept at a high voltage with respect to
the metal tube. Ionizing radiation entering the tube knocks
electrons off gas molecules or sides of the tube that then
accelerate towards the center wire, knocking off even more
electrons. This process eventually leads to an avalanche
that is detectable as a current. A particular Geiger counter
has a tube of radius R and the inner wire of radius a is
at a potential of V0 volts with respect to the outer metal

tube. Consider a point P at a distance s from the center
wire and far away from the ends. (a) Find a formula for
the electric field at a point P inside using the infinite wire
approximation. (b) Find a formula for the electric potential
at a point P inside. (c) Use
V0 = 900 V, a = 3.00 mm, R = 2.00 cm, and find the

value of the electric field at a point 1.00 cm from the center.

72. The practical limit to an electric field in air is about

3.00 × 106 N/C . Above this strength, sparking takes

place because air begins to ionize. (a) At this electric field
strength, how far would a proton travel before hitting the
speed of light (ignore relativistic effects)? (b) Is it practical
to leave air in particle accelerators?

73. To form a helium atom, an alpha particle that contains
two protons and two neutrons is fixed at one location,
and two electrons are brought in from far away, one at

a time. The first electron is placed at 0.600 × 10−10 m
from the alpha particle and held there while the second

electron is brought to 0.600 × 10−10 m from the alpha

particle on the other side from the first electron. See the
final configuration below. (a) How much work is done in
each step? (b) What is the electrostatic energy of the alpha
particle and two electrons in the final configuration?

74. Find the electrostatic energy of eight equal charges
⎛
⎝+3 µC⎞

⎠ each fixed at the corners of a cube of side 2 cm.

75. The probability of fusion occurring is greatly
enhanced when appropriate nuclei are brought close
together, but mutual Coulomb repulsion must be overcome.
This can be done using the kinetic energy of high-
temperature gas ions or by accelerating the nuclei toward
one another. (a) Calculate the potential energy of two singly

charged nuclei separated by 1.00 × 10−12 m. (b) At what

temperature will atoms of a gas have an average kinetic
energy equal to this needed electrical potential energy?

76. A bare helium nucleus has two positive charges and a

mass of 6.64 × 10 – 27 kg . (a) Calculate its kinetic energy

in joules at 2.00% of the speed of light. (b) What is this in

electron-volts? (c) What voltage would be needed to obtain
this energy?

77. An electron enters a region between two large parallel
plates made of aluminum separated by a distance of 2.0 cm
and kept at a potential difference of 200 V. The electron
enters through a small hole in the negative plate and moves
toward the positive plate. At the time the electron is near

the negative plate, its speed is 4.0 × 105 m/s. Assume the

electric field between the plates to be uniform, and find the
speed of electron at (a) 0.10 cm, (b) 0.50 cm, (c) 1.0 cm,
and (d) 1.5 cm from the negative plate, and (e) immediately
before it hits the positive plate.
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78. How far apart are two conducting plates that have an

electric field strength of 4.50 × 103 V/m between them,

if their potential difference is 15.0 kV?

79. (a) Will the electric field strength between two parallel
conducting plates exceed the breakdown strength of dry

air, which is 3.00 × 106 V/m , if the plates are separated

by 2.00 mm and a potential difference of 5.0 × 103 V is

applied? (b) How close together can the plates be with this
applied voltage?

80. Membrane walls of living cells have surprisingly large
electric fields across them due to separation of ions. What
is the voltage across an 8.00-nm-thick membrane if the
electric field strength across it is 5.50 MV/m? You may
assume a uniform electric field.

81. A double charged ion is accelerated to an energy
of 32.0 keV by the electric field between two parallel

conducting plates separated by 2.00 cm. What is the electric
field strength between the plates?

82. The temperature near the center of the Sun is thought

to be 15 million degrees Celsius (1.5 × 107 °C) (or

kelvin). Through what voltage must a singly charged ion be
accelerated to have the same energy as the average kinetic
energy of ions at this temperature?

83. A lightning bolt strikes a tree, moving 20.0 C of

charge through a potential difference of 1.00 × 102 MV.
(a) What energy was dissipated? (b) What mass of water
could be raised from 15 °C to the boiling point and then

boiled by this energy? (c) Discuss the damage that could be
caused to the tree by the expansion of the boiling steam.

84. What is the potential 0.530 × 10−10 m from a proton

(the average distance between the proton and electron in a
hydrogen atom)?

85. (a) A sphere has a surface uniformly charged with 1.00
C. At what distance from its center is the potential 5.00
MV? (b) What does your answer imply about the practical
aspect of isolating such a large charge?

86. What are the sign and magnitude of a point charge that
produces a potential of –2.00 V at a distance of 1.00 mm?

87. In one of the classic nuclear physics experiments at
the beginning of the twentieth century, an alpha particle
was accelerated toward a gold nucleus, and its path was
substantially deflected by the Coulomb interaction. If the
energy of the doubly charged alpha nucleus was 5.00 MeV,
how close to the gold nucleus (79 protons) could it come
before being deflected?

ADDITIONAL PROBLEMS

88. A 12.0-V battery-operated bottle warmer heats 50.0

g of glass, 2.50 × 102 g of baby formula, and

2.00 × 102 g of aluminum from 20.0 °C to 90.0 °C . (a)

How much charge is moved by the battery? (b) How many
electrons per second flow if it takes 5.00 min to warm
the formula? (Hint: Assume that the specific heat of baby
formula is about the same as the specific heat of water.)

89. A battery-operated car uses a 12.0-V system. Find
the charge the batteries must be able to move in order
to accelerate the 750 kg car from rest to 25.0 m/s, make

it climb a 2.00 × 102 -m high hill, and finally cause it

to travel at a constant 25.0 m/s while climbing with

5.00 × 102 -N force for an hour.

90. (a) Find the voltage near a 10.0 cm diameter metal
sphere that has 8.00 C of excess positive charge on it.
(b) What is unreasonable about this result? (c) Which
assumptions are responsible?

91. A uniformly charged ring of radius 10 cm is placed
on a nonconducting table. It is found that 3.0 cm above the
center of the half-ring the potential is –3.0 V with respect
to zero potential at infinity. How much charge is in the half-
ring?

92. A glass ring of radius 5.0 cm is painted with a charged
paint such that the charge density around the ring varies
continuously given by the following function of the polar

angle θ, λ = ⎛
⎝3.0 × 10−6 C/m⎞

⎠ cos2 θ. Find the potential
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at a point 15 cm above the center.

93. A CD disk of radius ( R = 3.0 cm ) is sprayed with

a charged paint so that the charge varies continually with
radial distance r from the center in the following manner:
σ = − (6.0 C/m)r / R .

Find the potential at a point 4 cm above the center.

94. (a) What is the final speed of an electron accelerated
from rest through a voltage of 25.0 MV by a negatively
charged Van de Graff terminal? (b) What is unreasonable
about this result? (c) Which assumptions are responsible?

95. A large metal plate is charged uniformly to a density

of σ = 2.0 × 10−9 C/m2 . How far apart are the

equipotential surfaces that represent a potential difference
of 25 V?

96. Your friend gets really excited by the idea of making
a lightning rod or maybe just a sparking toy by connecting
two spheres as shown in Figure 7.39, and making R2

so small that the electric field is greater than the dielectric
strength of air, just from the usual 150 V/m electric field
near the surface of the Earth. If R1 is 10 cm, how small

does R2 need to be, and does this seem practical? (Hint:

recall the calculation for electric field at the surface of a
conductor from Gauss’s Law.)

97. (a) Find x > > L limit of the potential of a finite

uniformly charged rod and show that it coincides with that
of a point charge formula. (b) Why would you expect this
result?

98. A small spherical pith ball of radius 0.50 cm is painted
with a silver paint and then −10 µC of charge is placed

on it. The charged pith ball is put at the center of a gold
spherical shell of inner radius 2.0 cm and outer radius 2.2
cm. (a) Find the electric potential of the gold shell with
respect to zero potential at infinity. (b) How much charge
should you put on the gold shell if you want to make its
potential 100 V?

99. Two parallel conducting plates, each of cross-sectional

area 400 cm2 , are 2.0 cm apart and uncharged. If

1.0 × 1012 electrons are transferred from one plate to the

other, (a) what is the potential difference between the
plates? (b) What is the potential difference between the
positive plate and a point 1.25 cm from it that is between
the plates?

100. A point charge of q = 5.0 × 10−8 C is placed at

the center of an uncharged spherical conducting shell of
inner radius 6.0 cm and outer radius 9.0 cm. Find the
electric potential at (a) r = 4.0 cm, (b) r = 8.0 cm, (c)

r = 12.0 cm.

101. Earth has a net charge that produces an electric field
of approximately 150 N/C downward at its surface. (a)
What is the magnitude and sign of the excess charge, noting
the electric field of a conducting sphere is equivalent to a
point charge at its center? (b) What acceleration will the
field produce on a free electron near Earth’s surface? (c)
What mass object with a single extra electron will have its
weight supported by this field?

102. Point charges of 25.0 µC and 45.0 µC are placed

0.500 m apart.

(a) At what point along the line between them is the electric
field zero?

(b) What is the electric field halfway between them?

103. What can you say about two charges q1 and q2 , if

the electric field one-fourth of the way from q1 to q2 is

zero?

104. Calculate the angular velocity ω of an electron

orbiting a proton in the hydrogen atom, given the radius of

the orbit is 0.530 × 10−10 m . You may assume that the

proton is stationary and the centripetal force is supplied by
Coulomb attraction.

105. An electron has an initial velocity of

5.00 × 106 m/s in a uniform 2.00 × 105 -N/C electric

field. The field accelerates the electron in the direction
opposite to its initial velocity. (a) What is the direction
of the electric field? (b) How far does the electron travel
before coming to rest? (c) How long does it take the
electron to come to rest? (d) What is the electron’s velocity
when it returns to its starting point?

CHALLENGE PROBLEMS

106. Three Na+ and three Cl− ions are placed

alternately and equally spaced around a circle of radius 50
nm. Find the electrostatic energy stored.

107. Look up (presumably online, or by dismantling an
old device and making measurements) the magnitude of the
potential deflection plates (and the space between them) in
an ink jet printer. Then look up the speed with which the ink
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comes out the nozzle. Can you calculate the typical mass of
an ink drop?

108. Use the electric field of a finite sphere with constant
volume charge density to calculate the electric potential,

throughout space. Then check your results by calculating
the electric field from the potential.

109. Calculate the electric field of a dipole throughout
space from the potential.
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